III	III	III		
Ш	Ш		Ш	Ш

180441

36122

_					
Reg. No.	*				

I Semester B.C.A. Degree Examination, August - 2021 COMPUTER SCIENCE

Computer Organizations

(CBCS Scheme 2019 Batch Onwards)

Time: 3 Hours

Instructions to Candidates:

Maximum Marks: 70

Answer All the Sections.

SECTION - A

- I. Answer any Ten of the following questions. Each question carries Two marks.(10×2=20)
 - 1. Define Minterm and Maxterm.
 - 2. Define a 2 input XOR gate with truthtable and logic symbol.
 - 3. Prove that $(\overline{BC} + C) = 1$.
 - 4. What is combination circuit? Give an example.
 - 5. Define Toggling and Racing condition in JK flip-flop.
 - 6. Simplify
 - a) (11011+1001010)
 - b) (101×11)
 - 7. Convert (10011)₂ into Grey code.
 - 8. Define operation code and operand.
 - 9. Mention the phases in instruction cycle.
 - 10. Explain the types of instruction formats.
 - 11. Define auxiliary memory.
 - 12. Mention the components of CPU.

SECTION - B

II.	Ansv	ver an	ny Five of the following questions. Each question carries Ten marks. (5×10)=50)
	13.	a)	Explain universal property of NAND gate.	(5)
		b)	Simplify $F(A, B, C, D) = \{ \sum_{m} (1, 2, 4, 5, 6, 8, 9) + \sum_{d} (10, 11, 14, 15) \}$	using
			karnaugh map.	(5)
	14.	a)	Explain Half adder with a neat logic diagram.	(5)
		b)	Explain the working of a clocked SR flipflop.	(5)
	15.	Con a)	vert the following Decimal (41.6) to binary	(10)
	1,20	b)	Octal (630.4) to decimal	
		c)	Hexadecimal (6E5) to decimal	
		d)	Binary (10001011110) to hexadecimal.	
		e)	Octal (742) to hexadecimal.	
	16.	a)	Explain the registers of basic computers.	(5)
		b) -	Perform the following subtraction by using 2's complement m $(29)_{10}$ - $(7)_{10}$	ethod (5)
	17.	Exp	plain common Bus system with a neat diagram.	(10)
	18.	a)	Explain the types of CPU organization.	(5)
		b)	Explain data transfer instructions.	(5)
	19.	a)	Explain memory hierarchy in computer system.	(5)
		b)	Explain cache memory.	(5)
	20.		Write a note on main memory.	(4)
		b)	Explain the working of DMA with a neat diagram.	(6)

of matricilon (managers