

Il Semester B.C.A. Degree Examination, April/May 2015 (CBCS) (2014-15 and Onwards) COMPUTER SCIENCE

BCA 203 : Data Structures

Time: 3 Hours Max. Marks: 70

2	Instruction: Answer all Sections.				
6	Write a procedure to evaluate the given positix expression. A – NOITDAS				
Ar	nswer any 10 of the following:	<2=20)			
1.	What are linear data structures? Name any two linear data structures.	In or			
2.	Explain the abstract data types.				
3.	What is sparse matrix?				
4.	Describe binary search technique.	(B.CAS			
5.	What is garbage collection?	(d			
6.	What is dynamic memory allocation?				
7.	What is stack overflow? Write the difference between stack and a queue.				
8.	Define recursion.				
9.	What is dequeue?				
10.	Explain circular queue with an example.				
11.	Differentiate between non-terminal node and a leaf node.				
12.	Define height of a binary tree.				
SECTION-B					
Ans	swer any 5 of the following: (5×1	10=50)			
13.	a) Explain the classifications of data structures in detail.	5			
	b) Explain the pattern matching algorithm of strings.	5			
14.	a) Describe the concept of linear search technique with an example.	5			
	b) Write a program to sort N elements using selection sort.	5			

15.	a)	Explain various types of linked lists.	5
	b)	Write an algorithm to insert an element at the end of a linked list.	5
16.		rite a program to insert, delete and display the elements of a circular queue ing arrays.	10
17.	The same	Explain various types of queues. Write a procedure to evaluate the given postfix expression.	5
18.		Write recursive functions for tree traversals. Define binary search tree. Give an example.	6
19.		Explain various tree terminologies with a neat diagram. Explain graph traversal in detail.	5
20.	a)	What are non-primitive data structures? Explain the operations on non-primitive data structures.	5
	b)	Demonstrate the working of insertion sort with an example.	5

(5x10=50)

a) Explain the classifications of data structures in detail.
 b) Explain the pattern matching algorithm of straigs.

a). Describe the concept of linear search technique with an example.